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Properties of Kruithof s Projection Method
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(Manuscript received July 24, 1978)

In 1937, J. Kruithof introduced a scheme for projecting from mea-
suredpoint-to-point teletraffic data to some future values, based upon
estimates of total originating and terminating traffic only. This study

seeks to give a unifiedpicture ofKruithof's projection method and its

generalizations, with some practical details and recommendations

for implementation. The main text deals with existence and conver-

gence testing, treatment of ill-conditioned or slowly convergent cases,

and various extensions of the basic method. An appendix includes

proofs of existence, uniqueness, convergence, and continuity.

I. INTRODUCTION

J. Kruithofs method 1

for projecting from measured point-to-point

teletraffic data qy to some future values py is based upon estimates of

total originating and terminating traffic only. While the original pub-

lication (in Flemish) did not receive as much attention as it may
deserve, the idea was good enough that it has been independently

reinvented numerous times in the intervening years. Related tech-

niques have turned up in economics, statistics, biophysics, pattern

recognition, and vehicular traffic studies, for instance. Such repetition

largely seems due to a scientific "Babel" effect: workers in different

technical disciplines can no longer read each other's work and recognize

the same problem in a new context.

While Kruithof showed that his method had certain properties

which are clearly desirable in a projection scheme, he did not investi-

gate the underlying mathematical problems. Subsequent workers, such

as Bear,
2
Kullback,

3
Sinkhorn,

4
'
5
Theil,

6 and particularly Csiszar,
7 have

thrown much light on these matters. This paper seeks to give a unified

picture of Kruithof's method and its many generalizations, with some
practical details and recommendations for implementation. Much of

the more intricate mathematics is relegated to an appendix, including

proofs of existence, uniqueness, convergence, and continuity. These

are cited as needed in the main text, which contains information on
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existence and convergence testing, treatment of ill-conditioned and

slowly convergent cases, and various extensions of the basic method.

The final comments propound a rationale for Kruithof projection in

the context of Bell System planning.

II. KRUITHOFS BASIC METHOD

In 1937, J. Kruithof
1 proposed a technique for predicting the point-

to-point traffic pij in a given year from a number of originating points

i = 1, 2 • • • M to a number of terminating points / 1, 2 • • • N. The

units could be calls, trunks, or erlangs, for instance, as long as it makes

sense to add up various entries in the matrix p = [py]. It is assumed

that the corresponding traffic matrix q = [qij ] is known for some other

year, while total traffic 6, at each point i and dj at eachj have already

been estimated by some external means to yield:

bi = Yi Pij (1)

j

dj=lPij. (2)

i

Then Kruithof's formula for projecting p from q is:

pij=qijE iFj. (3)

The "growth factors" Ei and Fj for the originating and terminating

points are implicitly defined, and must be computed by solving (l)-(3)

simultaneously.

Kruithof recommended that (l)-(3) be solved by starting with the

estimate p = q, then alternately normalizing the rows of p to satisfy

(1) and the columns to satisfy (2), until it stops changing. In practice,

this scheme suffers from a tendency to accumulate roundoff error. A
mathematically equivalent procedure with better numerical properties

would be to substitute (3) into (1) and (2), solving for Ei and Fj to

obtain:

Ei = &,•/£ qijFj (4)

j

Fj
= dj/lqijEi . (5)

i

Starting from an arbitrary estimate, such as Fj- 1 for ally, (4) and (5)

may be evaluated alternately until p converges.

Various questions arise naturally in connection with this projection

method:

(i) Under what conditions do (l)-(3) possess a solution p *?

(«*) Can there be more than one solution for p * ?

(Hi) How does p * vary with the estimates of total traffic?

(iv) Does the iteration converge, and if so, to what?
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(v) When should we stop iterating a given case?

(vi) Are there valid generalizations of this scheme?

Many of these points are treated at considerable length in the appen-

dix, which discusses a generalized problem: find a probability distri-

bution P which satisfies arbitrary linear constraints, such as (l)-(2),

and is related to a given distribution Q by a product formula, such as

(3). To make the connection in the present case, our first step is to

divide p by the sum p of all its elements, reducing it to a joint

probability P p/p that a call, trunk, or other increment of traffic is

from i toy. Now (1) and (2) yield relations:

B, = 6,/p = £ P„ d')
j

DJ ^dj/p = lPiJ ,
(2')

i

with Bi and Dj the marginal distributions of traffic on i and/ Similarly,

q is divided by the sum q of its elements to get the joint distribution

Q = q/q. Let the events {e) in the appendix be the set of pairs e =

(i,j) and the constraints {c} corresponding to (29) be (l')-(2') for all

points i and/ Then taking Et = Vip/q and Fj = Wj puts the projection

formula (3) in exactly the product form (32):

Pu = QijEiFjq/p = QijViWj, (3')

so that we have a case of the general Kruithof problem defined in the

appendix.

Now the existence conditions from the appendix show that there is

a solution p* of the form (3) if and only if (1) and (2) have some

solution pij that vanishes for each q$ that vanishes and is positive

whenever qy is positive. The uniqueness results show there is at most

one solution p*. The solution is continuous in all 6, and dj whenever it

exists. The iteration on (4) and (5) can be recognized as an example of

a relaxation procedure, as discussed and analyzed in the appendix. If

(l)-(2) possess a solution py that is zero for each qy that is zero, the

iteration will converge to some p with these same properties. The limit

may not be of the form (3) though, since p,y can also vanish for some

qij > 0. When a solution p* to (l)-(3) exists, however, the iteration

converges to it uniquely. This explains the resistance of (4)-(5) to

roundoff effects, since such perturbations die out in the process of

converging. In the special case that q tJ is symmetric and 6, = d, for all

i, uniqueness shows thatp,> is also symmetric, since p* and its transpose

both satisfy (l)-(3). We should note that only p* is unique, not the

factors Ei and Fj in (3). For instance, replacing them by EJa and aFj

for all i,j, and any a > will produce the same p*. The extent of this

nonuniqueness is characterized later.
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Kruithof pointed out two desirable properties possessed by the

projection scheme. The first, called "reversibility," says that after

projecting traffic from q at time 1 to p at time 2, we can turn around

and project backward to time 1, recovering q exactly. The second

property, "divisibility," says projecting from q to p and then from p to

r at time 3 yields just the same result as projecting directly from q to

r. Thus the projection scheme is not noisy, in the sense of irretrievably

losing information along the way about the initial traffic. Rather, p
depends only on q and the row and column sums, not on the path

followed over time. Kruithof also described a third desirable property,

"separability," which did not hold for his basic method. The idea is to

be able to merge or split a collection of points i orj, without affecting

the projected traffic for any other points. By careful generalization of

Kruithof's method, a property similar to this can be introduced.

III. NETWORK FLOW CONSIDERATIONS

An important aspect of Kruithof's method may be visualized by

means of a flow on the simple directed graph in Fig. 1. The nodes i =

1, 2 • • • M and j = 1, 2 • • • N represent originating and terminating

points. The edge joining node i to nodey carries trafficpy . Interpreting

(l)-(2) as conservation laws, the remaining edges to source s and sink

t carry total traffic quantities 6, and dj, while the net flow from s to t

is the sump of all the flowspy . When an element qy vanishes in q, the

corresponding edge from i to j is deleted in the network, so that flow

ptj is automatically zero. For the flow p to have the form (3), all

remaining edges must have nonzero flow py on them. Conversely, if a

flowpy can be constructed that satisfies (l)-(2) and does not vanish on

any edge of the network, then it fulfills the existence conditions, so

that (l)-(3) have a solution p*.

The labeling method of Ford and Fulkerson
8 immediately springs to

mind as a means of constructing a flowpv- to satisfy (l)-(2). This is a

simple, efficient, easily programmed algorithm that maximizes the net

flow from s to t We just assign maximum capacities of 6, for edges

from s to i, infinity for edges from i toy, and dj for edges from; to t. If

the maximum flow obtained is less than:

Fig. 1—Network model.
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p = I bi:

- I djt (6)

;

then no such solution of (l)-(2) exists. The only trouble is that the

flow obtained may not be positive on all edges, as required to establish

that (l)-(3) have a solution. This can be cured by assigning a suffi-

ciently small lower bound p£> ss h > to flow on the edges from i to/
An initial flow of h on each such edge will then be feasible.

In practice, the total traffic quantities 6, and dj are integers or can

be scaled up and rounded off to an approximate integer problem

without loss of credibility. The labeling method may then be modified

to carry h as an infinitesimal quantity, while preserving pure integer

arithmetic for efficiency and to avoid roundoff error. Indeed, since one

wants to draw a yes-or-no conclusion about existence of a solution,

roundoff introduces an unwelcome uncertainty. In the modified

scheme, all capacities and flow variables are carried as pairs (m,n) of

integers, representing the expression m + nh. In the steps of the basic

labeling algorithm,
8 one adds and subtracts various capacities and

flows, attaching labels to nodes according to whether or not the result

exceeds zero. In the modification, the obvious rules apply for adding

and subtracting quantities m + nh; it remains, however, to specify an

interpretation for inequalities involving such quantities. Two classes

of inequalities must be defined:

(i) m + nh> 0(1) means m & 1.

(ii) m + nh> 0(h) means m > 1 or m = but n>l.

In designating h an infinitesimal, we are really promising to choose it

as small as necessary so that
|
nh

\
< 1 for all n that arise.

The solution proceeds in two phases. First the standard labeling

method is used, but with all inequality tests to be taken as > 0(1).

Thus, in each iteration, an augmenting path of capacity > 0(1) is

found. The net flow increases by at least one unit (plus or minus some

nh), so that this phase terminates after a finite number of iterations.

At this point, the net flow must be p — nh for some h 2* 0, or else no

flow solution of (l)-(2) exists; in effect, we have the maximum flow for

the special case h = 0. The second phase repeats the standard labeling

method, but with all inequality tests to be taken as > 0(h). Now each

augmenting path has capacity > 0(h), increasing net flow by at least h

units and, again, the iterations terminate in a finite number of steps.

If the maximum flow reaches p, then a solution p of (l)-(2) has been

constructed that fulfills the existence conditions; otherwise, no such

solution exists. The two-phase algorithm was programmed, for the

network associated with an arbitraryM x N matrix q, in about eighty

lines of Fortran. In tests, it was able to settle the question of existence

of solutions to specific Kruithof problems with gratifying rapidity. The
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same technique can be used to maximize flow on any network under

any mixture of > and > capacities.

Still more can be gleaned from the network model above. Observe

that in (6) the sum of the 6, must equal the sum of the dj in order to

conserve flow. This requirement is just a simple example of a class of

necessary conditions arising from (l)-(3). More generally, let /be any

subset of originating nodes i and J{I) be the subset of terminating

nodes j with edges to nodes in /. That is, node j is in J(I) if g,> is

positive for some node i in I. Then the flow bi to node i in / can only

pass to nodes in J(I), so that it is included in the flows dj out of these

nodes. Thus the total flow Yd) from nodes in J(I) cannot be less than

the total flow X{I) to all the nodes in 7:

X(I) = £&,*£ Y(I) = £ dj (7)

for each proper subset I (that is, I not empty and not containing all i).

Conversely, these necessary conditions guarantee that every cut has a

capacity of at least p, so that (6)-(7) are also sufficient conditions for

existence of a flowpg that satisfies (l)-(2).

Accounting for eq. (3), the requirement of positive flow on each edge

allows conditions (7) to be strengthened. Indeed, flow Y(I) from «/(/)

includes the flow X(I) into / plus any additional flow to J(I) from

nodes i that are not in /. If any edge joins a node outside I to J(I),

then its flow is positive and (7) becomes a strict inequality:

X(I) < Y(I). (8)

If equality holds in (7), the rest of the network has no connection to J

and </(/), except through s and t Such a disconnected situation

represents two or more independent Kruithof problems, which ought

to be treated separately from the outset. Indeed, the rows and columns

of qij can then be renumbered so that it is partitioned into two or more

uncoupled blocks. To simplify the statement oflater results, we assume

that the problem does not decompose in this way, so that the network

is connected and (8) holds for every proper subset / of the nodes i. In

complete analogy to the case of (6)- (7), necessary conditions (6)-(8)

are also sufficient for existence of a positive flow satisfying (l)-(2), and

hence for existence of p*. To see this, we first reduce all network flows

and capacities by the initial feasible flow h used in the modified

labeling method. For sufficiently small h > 0, conditions (7)-(8) now
apply to the reduced bi and dj as well. But these again show enough

capacity on every cut that a flow/?,, - h 5* exists satisfying (l)-(2).

Conditions (6)-(8) can also be used in a direct proof that p* exists,

independently of results in the appendix. The idea is to seek a station-

ary point of the quotient Num/Den of two multinomials in the growth

factors Fj 2* 0. The numerator is positive on the interior and vanishes

at boundaries (that is, where some Fj = 0):
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Num = n Ff, 0)
j

while the denominator is also positive on the interior:

Den = Y[

-\>>,

2 QyFj
i

(10)

Setting a derivative of Num/Den with respect to Fj to zero yields the

same result as substituting (4) into (5). Thus, if the values Fj make

Num/Den stationary, they will also yield a solution p* of (l)-(3). Note

that Num and Den are both homogeneous of order p from (6), so that

their quotient is positive and constant along interior rays (that is,

along aFj for all a > 0). Since the rays form a compact set and Num/
Den is positive and continuously differentiable on the interior, it is

enough to show that the quotient goes to zero on the boundary to

deduce that it achieves a (stationary) interior maximum. Now suppose

that Den vanishes at some boundary point F and let I be the set of

nodes i for which the factor £ QijFj in (10) is zero. Then Fj must vanish

if qij is positive for some i in J, and hence for every j in «/(!). If Z
measures distance from an interior point F' to boundary point F, then

the numerator will vanish as F' approaches F at least as fast as Z Y(I)
,

while the denominator goes like ZX{I)
, from (7). Thus Num/Den

approaches zero at each boundary point F, from (8), completing the

proof. The enterprising reader may find it instructive to ferret out the

connection between the preceding proof of existence and the more

general proofs in the appendix.

One immediate consequence is that the Kruithof problem always

has a solution p* if q is strictly positive and (6) holds. Indeed, each

node i has an edge to every node j, so that Y(I) = p for every proper

I and (8) follows. To verify this case more directly, one can construct

the positive flow p,> = bidj/p, which satisfies (l)-(2). Another useful

example is a square matrix qy with zeros only on the diagonal. Then
Y(I) = p for every I with two or more nodes, so that only the unit sets

i must be checked. Conditions (8) now reduce to the requirement 6,

+ di<p for every node i. An important application involves choosing

all bi and dj equal to one, so thatM = p — N and q must be reduced

to a doubly stochastic matrix p*. But (7) says that X(I) and Y(I) are

just the sizes |/| and \J(I)\ of 7 and J(I), respectively. A result from

matching theory, the "marriage theorem,"
9 now shows that the con-

ditions |/| s£ \J(I)
|
from (7) are equivalent to q having some positive

principal diagonal, and that |/| < \J(I)\ from (8) imply that each

positive element of q lies on a positive principal diagonal. These are

the conditions cited by Sinkhorn and Knopp5
for the doubly stochastic

case. In a typical case, the modified labeling method will ordinarily be

easier to apply than (6)-(8) in testing for existence of a solution.

The growth factors E and F are essentially unique, except for the
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possibility of scaling them along rays as described earlier. Indeed, let

E and F satisfy py = qgEiFj = qijEiFj for all i and j. Then %/Ei =

Fj/Pj = a whenever qtj is not zero, and the factor a is independent of

I andy since the network is connected. When the problem decomposes

into independent Kruithof subproblems, the network breaks into sep-

arate connected components, each with a separate scaling factor a.

The case that p and q are symmetric implies that E = a¥, so that the

growth factors may be scaled to satisfy E = F uniquely.

IV. CONVERGENCE CONSIDERATIONS

In iterating (4) and (5) to solve for p*, a good convergence test can

be based on the norm consisting of the sum of the absolute values of

the differences between the left and right sides of (1) and (2):

g - S I
bi - Et I gift |

+ I \dj - Fj £ qijEi |

.

(11)
«'

j j «

Clearly, g is the net error in traffic units and goes to zero as p goes to

the solution p*; we can show that, in fact, g does so monotonically.

Indeed, g is continuous, convex, and piecewise linear in E, with Ei-

derivatives of the form:

- I QuFj
J

sgn bi - Ei £ QifFf + sgn dj - Fj X qfjBi

and this expression always takes the sign of Ei £ qijFj — bi or else

vanishes. Thus g can only decrease or remain constant as Ei is

increased or decreased to satisfy (4) and g achieves its minimum, for

any fixed value of F, when each Ei is given by (4). A similar discussion

holds with respect to the Fy-derivative of g. Accordingly, when g
becomes small during iteration, it will remain so, and it is appropriate

to stop.

During the process of iterating to compute E and F, we can accu-

mulate a value ofg with very little additional effort. Specifically, when

all the Fj have a new value, the second term of (11) vanishes. Proceed-

ing to update the Ei, we compute X QijFj for use in (4). With two more

additions and one multiplication, we get the corresponding contribu-

tion to g in the first term of (11). By the time all new E t are computed,

a value ofg for F and the old E is available. Clearly, the iteration may
be interpreted as a relaxation scheme to minimize g by cyclically

minimizing over the Ei and Fj.

Since nonexistence of a solution p* when (6) holds can only accom-

pany zero elements in q, one might attempt to force a solution by

substituting a small positive value for each zero. In general, this is a

terrible idea; Sinkhorn,
4
for instance, shows some examples of patho-

logical behavior associated with such schemes. The iteration process

will seek to get significant flow on some edges with small qy by using

524 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1 979



very large growth factors. The solution p* will not greatly resemble q
and the iteration will ordinarily converge very slowly. Indeed, slow

convergence is a possible warning that the problem is ill-conditioned

in some way. For such cases, it is prudent to check the "existence

margin" by setting successively larger elements of q to zero and

running the existence test until it fails—just the reverse of adding

small positive terms. The labeling method is sufficiently economical of

computing time that it may be repeated often in preference to perform-

ing a great many iterations.

In general, ill-conditioning occurs when some of the total traffic

values bi and d, are not particularly consistent with one another. That

is, when some collection of small elements qtj are set to zero, (l)-(2) no

longer have any solution for which p# vanishes if and only if q$ does.

The limit as these elements approach zero may not exist, or it may
depend on the specific way in which they vanish. In short, p* is not

necessarily continuous in the elements of q at the boundaries of the

feasible region. On the other hand, p* is provably continuous in the

row and column sums, or any other constraint levels, so that adjusting

them to achieve consistency at the boundary is a stable procedure.

Thus, the proper way to treat ill-conditioning is by readjusting some

values of 6, and dj to make them more consistent, though it may not

be obvious how to do this. We see later that there is an easy way to

extend the Kruithof method so that it automatically allocates traffic

among the rows or columns of prespecified aggregations in a consistent

and reasonable way.

It is also possible for a quite reasonable problem to converge at a

very slow rate. For example, a problem may decompose into multiple

independent subproblems, whose network components are only con-

nected by way of s and t. Now, each of the subproblems may be well-

behaved, so that the overall iteration process converges rapidly. Nev-

ertheless, when a few small positive values of qtj are introduced to

couple the subproblems, convergence will be rapid at first and then

become rather slow, as a rule. Moreover, the solution to which the

problem converges is a sensible one that differs only slightly from the

decoupled case. This model could apply to two or more countries, for

example, with much more traffic internally than across their borders.

What causes the above difficulty is the difference in degree of

uniqueness between coupled and decoupled cases. For n subproblems,

n independent arbitrary scaling factors a will appear in the general

solution. The actual values they assume will be determined by the

initial values assigned to E or F. This effect appears as some arbitrar-

iness in the relative sizes of the E, for those portions of E associated

with the various subproblems. For the coupled case, only a single

overall scaling factor is appropriate; the portions ofE from the different

subproblems must now be scaled in a correct ratio to each other. In
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the rapidly convergent phase, each subproblem is solved to within its

scale factor; the slow phase corresponds to a process of adjusting scale

factors to account for small coupling terms.

The slowly convergent phase may be shortened appreciably by

means of standard numerical schemes for acceleration of convergence.

Wynn's algorithm,
10

in particular, has been employed successfully to

project the values of the Ei for successive steps, in order to estimate

their limit. The strategy is to calculate the norm g for the projected E
and, when this is much less than the current error g (one-fiftieth, say),

restart the iteration from the projected value. Additional computa-

tional effort and program steps for a convergence acceleration option

in Kruithof's method are minor. Of course, acceleration techniques

cannot rescue a truly ill-conditioned case, where the existence margin

is small. All this is not meant to imply that slow convergence is the

rule with the Kruithof method. In fact, some rather large examples,

involving several hundred rows and columns, have been solved quite

readily.

V. VARIOUS EXTENSIONS

An immediate generalization of the basic Kruithof scheme would be

to stratify the traffic data in more than two dimensions. Besides the

originating and terminating points i and j, other indices k, I, m
might specify time of day, week, or year, type of traffic (business or

residential, for instance), and so on. A three-dimensional case of the

general Kruithof problem then might take the specific form:

pijk = qijkEiFjGk (12)

bi
= YiPijk = Ei Y1

qijkFjGk (13)

dj = £ Pijk = Fj J qukEiGk (14)
i,k i,k

fk = %Pijk = Gk 2 qijkEiFj. (15)
i.j 'J

Reduction to the standard case in the appendix proceeds as before.

We define events e = ( i, j, k ) and constraints c corresponding to each

value of i, j, and k, while p and q are normalized to probabilities by

dividing by the sums of their elements.

The proofs of existence, uniqueness, and convergence in the appen-

dix still hold for this case. In particular, a solution p* of (12)-(15) exists

if and only if (13)-(15) have a solution />,>* that is positive or zero

accordingly as g#* is positive or zero. The norm g consisting of the sum
of absolute values of differences between left and right sides in

(13)-(15) is still net error in traffic units, though it no longer decreases

monotonically with each new value of Ei, Fj, or Gk . Nevertheless, g
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goes to zero as p goes to p* and it is still a reasonable indicator of

convergence. When q is strictly positive, the interior solution />,,* =
bjdjfk/p

2
of (13)-(15) demonstrates that p* also exists, provided that

the bi, dj, and /* each add up to p. A more general existence test would
involve solving the linear programming problem described in the

appendix, with appropriate precautions against being misled by the

effects of any roundoff error. Network flow models no longer apply,

and integer solutions need not occur in the case of integer constraints.

Another three-dimensional example of the general problem might
be as follows:

Pijk = qijkEijFjkGik (16)

bu = S p^ = Eij £ qijkFjkGik (17)
* *

djk = £ Pijk = FJk £ qijkEijdk (18)
i i

fik = I Pijk = Gik £ qukEijFjk, (19)
/ j

and the same sort of discussion applies to this case as to (12)-(15). For

four or more dimensions, the reader should have no difficulty creating

a great many extensions of this general class, such as pyu =
QijkiBijCjkDkiEuFikGji. The rule is to multiply (fa*/... by one factor

Eij. . . for each constraint in which />,>*/. appears, and then solve each

constraint for its factor by dividing into the constraint level 6,> . In

higher dimensions, the number of elements in p and q grows much
faster than the numbers of constraints and multipliers. The numbers
of the latter thus remain reasonable, if only to stay within storage and
computational limits on the former. The corresponding linear program
to test for existence will therefore have a basis of reasonable size, as

well.

Another class of extensions involves specifying less about total traffic

quantities in the two-dimensional case (or any other dimension, using

the previous generalization). That is, various sets I or J of originating

or terminating points i or j may be lumped together, with only their

total traffic D and d to be supplied externally. Now (l)-(2) yield the

following constraints:

b, = Zb, =ZZpu (20)
/ / j

dj = %dj='Z'Zp lJ . (21)
j j i

Results on the general Kruithof problem in the appendix show that Ei
= Ei and Fj = Fj in this case, so that (3) becomes:

Pij = q.jE.Fj = qijE,Fj, (22)
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assuming each i belongs to one J and each j to one J.

To solve for £ and f , we can collapse the problem to a simpler form:

add together all rows i in J and all columnsj in J to work with reduced

matrices p and q, as follows:

pu^llPij ffi'-SZtftf- (23)

i j i j

Now (20)-(22) are reduced to exactly the same form as (l)-(3):

5/=EP/</ dj^^pu pu=quEiPj, (24)

j i

but with many fewer constraints to be satisfied. Note that this proce-

dure of aggregating traffic nodes may absorb some elements of q that

were zero or small, in order to ameliorate Ul-conditioning. Indeed, the

corresponding disaggregation formula (22), to be used after we have

solved (24), simply allocates traffic py to the element qy in proportion

to its relative contribution to qjj in (23). This in turn automatically

shares out bi and dj among their 6, and dj in a consistent manner, as

mentioned earlier. As another of its virtues, aggregation is a smoothing

process that can cut down the effects of errors in the predictions of

total traffic by reducing the number of independent parameters. The

reduction in manual and computational effort is also an evident

advantage. To organize the computation in an efficient manner, we

would start with two tables, I(i) and J(j), that assign each point i or

j to its appropriate aggregate. Then we run through the pairs (i, j),

adding each qy into its correct qmjy\. After we solve (24) for £ and

f\ the answer is just/ty = qyEm&JU) from <22 )- Existence testing can

be performed directly on q, b, and d with the labeling method.

The scheme above illustrates a sense in which a "separability"

property can be introduced, similar to what Kruithof sought. There is

no real need to require that different / or J be disjoint. If overlap is

permitted, then qy would be multiplied by Ei for each J that contains

i, and by Fj for each J containing/ Collections of rows or columns can

now be aggregated only if they all he in the same sets I or J. Since

some pa may now be counted twice, the constraints can no longer be

interpreted as conservation laws for a flow, and the existence test

becomes a linear program, as described in the appendix.

Another way of specifying less in the Kruithof problem is to leave

some rows or columns unconstrained. At such i and/', we can specify

the growth factors Ei and Fj arbitrarily; Bear
2 has considered choosing

these multipliers to be one. One advantage of not constraining is that

any element qy for which row i and column/ are not constrained plays

no part in the solution process and may be set to zero for convenience.

For computational efficiency, we multiply each of these rows by its

fixed growth factor and add together all such rows to form a single

new row; similarly, all unconstrained columns combine. Of course,
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fewer specifications may be introduced in higher-dimensional schemes
as well.

Anyone can tailor their own ad hoc constraints to account for

additional knowledge of the future. For instance, it may be known that

certain items of point-to-point traffic py are growing considerably

faster than the other, more typical items in their rows and columns.

Then a constraint may be created to fix the projected value of the sum
of all such items. This produces one more growth factor to be multi-

plied into qij for these selected items only. Similar treatment may be
given to a class of items that have slower than normal growth, that

decrease, or that just vanish. The general Kruithof problem defined in

the appendix includes all such cases, as well as any other linear

constraints that may need to be introduced.

VI. SUMMARY AND COMMENTS

In this study, we have sought to give a unified view of Kruithof's

teletraffic projection method, including theoretical aspects as well as

practical details for its implementation. The mathematics in the ap-

pendix treats the theory of a general Kruithof problem. Necessary and
sufficient conditions for existence and convergence of its solution are

derived, along with proofs of uniqueness and continuity. The main text

considers special cases of this problem that are of particular interest.

Schemes for existence and convergence testing and for handling slow

convergence are discussed. We conclude by trying to place this projec-

tion scheme in the context of the Bell System planning function.

An early and important step in the Bell System planning process is

that of predicting future demand for the various services offered. By
their nature, such projections can be quite uncertain, since they will

include cumulative effects of several years' fluctuations in the United

States and world economy, for instance. Indeed, analysis of time series

of typical traffic data" indicates that about five percent per year of

random error remains in even the best projections, and must be

regarded as inherently unpredictable. Nevertheless, a strategy is avail-

able to cope with such uncertainties, for the purposes of planning.

The fundamental assumption required in this strategy is that traffic

increases monotonically with time. First a plan can be generated, based
upon some "best guess" of the demand profile over time. From year to

year, the time scale of the plan can then be corrected to match up the

originally projected demand with actual values or better estimates,

based upon more recent data. In effect, a parameter such as total

traffic is thus used as a new independent variable in the plan, while

time is a dependent variable that absorbs much of the economic
fluctuations and other error. However, this leads us to view the overall

process of planning as a system, rather than a collection of independent

modules, one of which is projection. We see that a "sliding time scale"
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approach to planning now places a premium not so much on absolute

accuracy of traffic predictions over time as on "relative accuracy" or

consistency and uniformity among the various traffic quantities that

are projected.

A typical plan may be based upon many thousands or tens of

thousands of projected traffic items. We wish to predict these quanti-

ties such that a single readjustment of the plan time scale (based on

some total traffic measure, for instance) can do a reasonable job of

correcting for the error in each item. This requires that projection be

done in such a way that the prediction errors in individual traffic items

will tend to be highly correlated. Thus, a scheme which projected

individual time series for each separate traffic quantity, for example,

might give the best absolute accuracy for each item, but still be

unsuitable for planning purposes because the noise components in

these time series would tend to be independent. At the opposite

extreme, initial measurements of all traffic quantities might simply be

increased by a single overall growth factor for each year under study.

This would produce very strong correlations but fails to take into

account detailed knowledge of growth patterns, say, for separate

portions of a study area.

The general Kruithof method offers many middle roads. Any collec-

tion of average or overall traffic quantities b may be predicted exter-

nally (from time series, for example, or market surveys). As shown in

the appendix, the remaining items can then be projected to be con-

sistent with whatever is given. Inserting a great many external predic-

tions introduces more detailed knowledge, but reduces the correlation.

Supplying fewer external specifications yields stronger correlations, at

some loss in accuracy; various tradeoffs are possible.

All the schemes of Kruithof type act to minimize the net information

change in the projection, subject to those external constraints being

enforced. This gives them the remarkable properties called "reversi-

bility" and "divisibility" by Kruithof. Essentially, all that is lost of the

original data q in projecting it to future values p is whatever is inherent

in the externally provided average quantities b. Supplying new values

b' for these quantities will thus allow us to continue the projection

from p to another year or recover the base data q exactly. Effectively,

Kruithof's method is able to resolve q and p into a part which

determines some arbitrarily chosen system of average quantities b

that are to be changed and an "orthogonal" part that does not change.

This latter part is essentially the equivalence class C(Q) discussed in

the appendix.

Kruithof's original proposal, and much of the subsequent work on

the subject, is concerned with projecting two-dimensional arrays/),; of

traffic data. In this case, the most natural overall quantities to be

specified externally are the sums of rows i and columns j in p. For
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example, supplying two hundred parameters for a 100 X 100 matrix

would suffice to project a total of ten thousand items. An option is to

aggregate rows and columns, perhaps in collections of average size

four, so that only fifty external sums are needed. This is a tradeoff

that increases correlations but may decrease accuracy. Meanwhile, it

can alleviate possible ill-conditioning, reduces manual and computa-
tional effort, and still projects ten thousand items. Examples of data

organized in three or more dimensions are also known in Bell System
planning. Kruithof's method generalizes to such cases without any
particular difficulty.
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APPENDIX

In this appendix, we define the general case of the Kruithof problem

and derive various properties. In particular, necessary and sufficient

conditions for existence and convergence of solutions are developed,

and uniqueness and continuity are proved. To begin with, consider two

probability distributions, Pe and Qe , over the same finite set of disjoint

events {e}, so that:

£ Pe = 1 Pe 2* (25)
e

ZQe=l Qe^O. (26)
e

The information content of a probability, in appropriate units, is minus
its logarithm. Thus the change in information from Qe to Pe is just log

Pe — log Qe = log( Pe/Qe). The average of this information change is

defined as:

JC(P,Q)-ZPelog(P,/Q.)
f (27)

e

which will be interpreted as a measure of how close distribution P is

to distribution Q. A simple example is the case that all probabilities Qe

are equal; now K reduces to a linear function of the entropy of

distribution P. Thus entropy measures departure from the equiprob-

able case (corresponding to classical equilibrium). The expression (27)

goes by several names in the literature; for instance, Kullback distance,

/-divergence, relative entropy, discrimination information, and Gibbs

free energy.
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As a distance measure, K has two desirable properties: it is not

negative and vanishes only when P = Q. Two other properties, sym-

metry and the triangle inequality, are lacking; Csiszar
7
points out,

however, that laws analogous to the parallelogram identity and Pytha-

goras' theorem do hold, with K playing the role of squared length. To

show that K is nonnegative, first note that F(X) log ( 1/X) is strictly

convex, since F" = 1/X2 > 0. Defining X, = Qe/Pe and using convexity

in (27) yields the inequality:

K = X PeF(Xe) 2* f(£ PeXA = F(l) = 0, (28)

with equality only if all PeF(Xe ) vanish, in which case P = Q from

(25)-(26).

When Qe is positive and Pe approaches zero, Pe log(Pe/Qe) goes to

a zero limit; to ensure continuity, we will define it to vanish at Pe = 0,

even for the case Qe = 0. If some Qe = for positive Pe ,
then K is

infinite. Confining our attention to P that are not infinitely far from Q,

Pe must vanish whenever Qe does, so that e is an event of probability

zero. With no loss of generality, such e may be excluded from the set

{e} of events for now, so that all Qe are positive.

Consider the problem of minimizing K(P, Q) for fixed Q, over all

distributions P subject to (25) and a finite set {c} of arbitrary linear

constraints having the general form:

ZPeAec = Bc . (29)

e

This amounts to finding the distribution P that is closest to Q on the

intersection (denoted S(B), or just S) of the positive orthant P 2* and

the hyperplanes (29), which prescribe that certain averages over P
take on the values Bc . (To simplify the notation, assume that the

equality in (25) is designated c and is included among the constraints

c.) Observe that S is a compact convex polytope, so that the continuous

function K achieves its minimum value on S, whenever S is not empty.

Further, this minimum occurs at a unique point P* in S, and there are

no other local minima of K, since it is strictly convex. To see this, note

that the matrix of second partial derivatives of K with respect to P is

diagonal and positive definite. We assume from now on that S contains

more than one point.

Suppose that S contains an interior point P Inl
(that is, no Pi"'

vanishes); then P* is also an interior point. Indeed, consider any

boundary point P Bdy and the line p flrf>P /n ' joining it to P /n
'. The

gradient ofK has components 1 + log (Pe/Qe) that become arbitrarily

large negative on some neighborhood of PBdy
for those PBdy

that

vanish, while all other components remain bounded. Thus, a segment

f
pBdypim containing PBdy can be found along which K decreases
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toward the interior, and PBdy cannot be a minimum point of K. Since

the gradient of K is continuous on the interior of S, an interior P * is

a stationary point of K and, by strict convexity, there are no other

stationary points of K on S.

When P* is an interior point, the minimization problem can be

solved by using stationarity. Specifically, adjoin constraints (29) to K
with multipliers vc to form the Lagrangian function L ( P, v ) , as follows:

L = lPe \Og(Pe/Qe)-ZAeeVc + I BcVc. (30)

Now L is strictly convex on the positive orthant P ^ and becomes

infinite if any Pe does, while its gradient is negative infinite on the

boundaries. Thus it achieves a unique minimum over P 2* at some
interior stationary point P(v) > for any fixed values of vc . This point

is found by requiring the Pe-derivative of L to vanish for each e,

yielding the following necessary conditions:

we m \og(Pe/Qe ) = X A ec vc - 1. (31)

Setting Vc = exp(vc ) in (31), except for the constraint c corresponding

to (25) with Vc = exp(t;<- — 1), now yields

P.. = Qe exp(^t.) = Q(. n V?-% (32)
c

with all Vr strictly positive, so that P(v) cannot be on the boundary.

Suppose some vc are found such that P(v) satisfies the constraints

(29) and thus lies in S. Then since L = K on S, P(v) is a stationary

point of K on S, and hence is the unique minimum point P*. Con-

versely, the linear program of minimizing dK for all small variations

dP that satisfy (29) has (31) as its dual constraints. Since the primal

problem has rfP = as an optimum at P*, the dual is feasible there,

sc that v can be found to satisfy (31) at P*. The point of all this

reasoning is that a solution to (29) can be found with the specific

product form (32) if and only if S possesses an interior. When such a

solution exists, it is also the unique minimum point P * of K over S.

We can now define the Kruithof problem, in general, as that of finding

the factors Vc in (32) so as to satisfy the constraints (29).

Kruithof's "reversibility" property amounts to symmetry of the

"closeness" relation: whenever P is closest to Q, then Q is closest to P
in the same sense. That is, we define some new constraint levels:

Be m I QeA ec (33)

and seek a distribution R to minimize:

K = K(R, P) = £Re \og(Rc/Pe ) (34)
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over the set S(6) defined by linear constraints:

£ ReAec = 6C Re & 0. (35)

e

Defining Vc 1/VC , we can write Qe from (32) in the product form:

Qe = Pe II flK (36)

From (26), (33), and (36), Q is an interior point of S(6) having the

product form (32), so that R = Q is the unique minimum solution for

R, and Q is closest to P. Kruithof's "divisibility" property is just

transitivity of the closeness relation: when P is closest to Q and R is

closest to P, then R is closest to Q. Specifically, we choose an arbitrary

constraint vector fi in (35), such that S(B) has an interior point, and

seek R to minimize it in (34) over S(6). The solution for R is the right

side of (36) for some V, and substituting for P from (32) yields:

Re = QeT[(VcVc )

A
», (37)

c

which again has the product form (32). Thus R minimizes K(R, Q)

over S(6) and is closest to Q in this sense because it is closest to P.

Symmetry and transitivity show that "closest to" is an equivalence

relation determined by the particular matrix [AK ]. This relation

partitions the set of positive distributions over {e) into equivalence

classes. Each class C(Q) can be generated from any one of its members

Q by using (32): choose all positive values of the Vc for c ^ c and scale

the resulting values P as necessary to meet the normalization condition

(25). Since the column of [Aec ] corresponding to c is all ones, Vc

appears linearly in (32), and the scaling above represents a particular

choice of that variable. Uniqueness says that each constraint vector B
is achieved at most once in each class, while the existence condition

asserts that B is achieved in every class if it is achieved in one class. A
natural mapping B = /"(P), namely the linear mapping (29), takes any

C(Q) into the set E of constraint vectors B for which S(B) has an

interior. Clearly, /"is continuous and is one-to-one and onto E from the

existence and uniqueness results. We will see later that /is one-to-one

on the closure of C(Q), which is compact from (25). (However the

closure is not necessarily an equivalence class.) It follows that / is a

homeomorphism of C(Q) and E. In particular, P* is a uniformly

continuous function of the constraint vector Bon£ and its closure.

A useful result follows from the linear relation between v and w in

(31). Specifically, let R be any solution of (25) and (29), multiply Re by

we , and sum over e, using (29) and (31) to obtain

£ ReWe = %Re ^AecVc - 1 = ZBc vc -l (38)
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by exchanging the order of summation. It is easy to show from (31)

that the left side of (38) is just K(R, Q) - K(R, P), while the right side

does not depend on the particular choice ofR in S(B), so that

K(R, Q) + K(P, P) = K(R, P) + K(P, Q)

for all R, P in S and all P, Q in C. But now the choice P = P* - P
yields an example of the Pythagorean theorem noted by Csiszar:

K(R, Q) = K(R, P*) + K(P*, Q). (39)

Roughly, it says that the distance fromR to Q breaks into a component

within S from R to C(Q) at P* and an "orthogonal" component from

P* to Q within C(Q).

Now we will investigate the nonlinear (Wolfe) dual problem to

minimization ofK on S. Let H(v) be the minimum of L(P, v) over the

positive orthant P > 0, so that

H(v) = L(P(v), v) *£ L(P*, v) = K(P*, Q) < K(R, Q), (40)

which shows thatH(v) is bounded above ifS is not empty. Substituting

(31), (32), and (38) into (30) allows us to express H as a function of

each of v, V, w and P as follows:

H = I BcVc -%Qe expl £ AecVc - 1

c e \ c
t

= 1 + I Bc l0g( Vc ) - I Qe n Vi" (41)

c e c

= 1 + £ [ReWe ~ Qe exp(lVe)] = 1 + % [Re log(Pe/Qe) ~ Pe]-
e e

Direct differentiation of H(P) shows that it achieves a unique maxi-

mum over the positive orthant at P = R where H = K(R, Q). (Break

H into a linear part for those components of R that vanish and a

strictly concave part.) Indeed, if H(P) goes to K(R, Q) on P 5= 0, we

can conclude that P approaches R. Now the difference between K(R,

Q) and H(P) achieves a unique minimum of zero at P = R:

K - H = X [Re log(Re/Pe) + Pe] - 1 = K(R, P) + £ Pe - 1. (42)
e e

Whenever this expression vanishes for some P of the form (32), we

have K(P*, Q) = K(R, Q) from (40), and thus P* = R by uniqueness

of the minimum.
Suppose that values of P(v) of the form (32) approach some limit R

on the closure of C(Q). Such R satisfies (25) and thus (29) for the

constraint vector B = f(R). Now K - if becomes arbitrarily small, and

we conclude that R is the P * that minimizes K. This shows that the

closure of C(Q) consists of points P* that minimize K(P, Q). The

uniqueness of the minimum then says that the mapping /is one-to-one
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on the closure, as promised earlier. Choosing R = P* in (41) shows

that H(P*) = K(P*, Q) even when H(P) is extended to the closure of

C(Q) by continuity. Finally, the result (39) again follows by setting P
= P*in(42).

The nonlinear dual problem consists of maximizing if over all v, and

thus over positive V, or over the linear affine space of values w
generated by (31). By its construction, H is concave in v, while

differentiation shows that it is strictly concave in each individual vc .

Setting the Vc-derivatives ofH to zero yields necessary conditions for

a stationary maximum:

Bc = £ QeAec n Vfr\ (43)
e c'

These are the same relations that would be obtained by substituting

(32) into (29), namely, the general Kruithof problem. One possible

scheme for solving eqs. (43) would be by relaxation: choose some

variable Vc and adjust it to maximize H with all other variables Vc
-

held fixed; then choose some other variable and repeat, cycling through

all Vc infinitely often. (When H is bounded above by K(R, Q) in (40),

a value of Vc to maximize H and satisfy (43) always exists uniquely,

because —H is strictly convex in each vc and is arbitrarily large for

large vc .) If the values of P(v) for the iterates v approach the limiting

value P*, then the relaxation procedure represents a means of com-

puting P*. More generally, any collection of constraints c could be

solved simultaneously in (43), followed by another collection, and so

on, so that each c appears infinitely often. Simultaneous solution of

several constraints can be harder than the scheme of treating one

variable at a time, however. Another possibility might be to solve (43)

approximately for Vc , so that H increases at each step, but not

necessarily to its exact maximum in Vc . The general relaxation pro-

cedure is just an attempt to maximize H over all variables by doing a

few at a time. Such relaxation schemes are known12
to converge to the

maximum of a concave function under very general conditions.

In practice, Aec will generally be a zero-one matrix, so that the

powers of Vc in (32) do not become a nuisance. In such a case, the

constraints (29) have a simple interpretation, since they assign prob-

ability Bato the event c that is the disjoint union of those e for which

Aec = 1. Pursuing this view, the sum in (29) is taken over all events e

included in c (denoted e C c) and the product in (32) is taken over all

events c that include event e (denoted c D e). Substituting (32) into

(29) now yields

Be = X Qe II Vc =VcZQe II Vc, (44)
etzc c'Oe eCc Cf*c'De

as the form taken by (43) in this case. The relaxation iteration step
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now reduces to dividing Bc by the sum on the right in (44), in order to

calculate the new value of Vc that maximizes H. Under certain weak

restrictions on the sequence of variables chosen for iteration, it can be

shown that H increases to the limit K(P*, Q) and that P(\) converges

to P*. Specifically, assume that the iteration scheme includes an

infinity of intervals of lengthM , for some sufficiently largeM ,
in each

of which H is maximized over every variable Vc at least once. Then

the relaxation iteration converges if and only if S is nonempty; the

limit is P*, which minimizes K over S and lies on the closure of C(Q).

Indeed, with S nonempty, the consecutive values of H are nonde-

creasing but bounded above in (40). Thus H approaches some limit

H*, and the successive increases rfHmust eventually go to zero. Direct

computation from (41) and (44) now yields the relation:

dH = Bc [dvc
- 1 + exp(- dvc ) ]

,

(45)

where dvc is the corresponding change in vc . Differentiation shows this

expression to be strictly convex in dvc (except in the trivial case Bc =

0), vanishing only at its minimum, namely at dvc = 0. Thus each duc

also goes to zero as H approaches H*, so that dw goes to zero from

(31). Consider the values of P(v) that are obtained each time the

constraint c corresponding to (25) is satisfied in one of the postulated

intervals of length M . Since these values are confined to the simplex

defined by (25), they have a subsequence that converges to some limit

point R. Now each member of the subsequence differs from a solution

of constraint c by at mostM changes, each of order dw. It follows that

the limitR will satisfy every constraint c . But then, from the discussion

after (42), H goes to K(R, Q) on the subsequence and R is P*. Finally,

H increases to its maximum over P 2= for all iterates P, so that they

converge to P*. Conversely, whenever the P converge, the limit R
satisfies all constraints, so that S is nonempty. Csiszar proves conver-

gence for cylic iteration on collections of constraints, if each collection

contains c, by an elegant application of (39). In general, such cases do

not include single-variable relaxation schemes, such as those treated

above.

The artificial restriction that no Qe may vanish can now be dropped,

since (32) shows that Pe is zero whenever Qe is in any case. The

definition of S and its interior must be modified to account for all such

conditions, of course. That is, (25) and (29) are supplemented by

requirements that Pe vanish whenever Qe does, while Pe = makes P
a boundary point ofS only if Qe is positive. Thus the Kruithof solution

exists if and only if some P satisfies the constraints and vanishes for

exactly the same events that Q does.

The question of whether the existence condition is met for a partic-

ular constraint vector B can be resolved, in principle, by constructing

such an interior P with standard linear programming techniques.
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Indeed, consider the problem of maximizing A?0 subject to linear

constraints:

£ (Te + h)Aec + uc = Bc TeSsO uc 2= 0, (46)

where each equality c has been written such that Bc > 0. The slack

variables form the initial basis uc = Bc , and a phase one procedure

minimizes their sum. If not all uc are forced to zero at optimum, then

S(B) is empty. Otherwise, a point in S has been constructed, so that

the relaxation iteration will converge. In this case, all the uc are

dropped and phase two proceeds to maximize h. As soon as some step

causes h to exceed zero, Pe = Te + h is the desired interior point. If the

optimum still has h = 0, then S(B) has no interior, and the iterative

solution will not take the product form (32).
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